Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37956555

RESUMO

Heme B is a critical prosthetic group for the function of numerous proteins including the cytochrome P450 (CYP) family of enzymes. CYP enzymes are involved in the metabolism of endogenous and xenobiotic molecules that are of central interest in drug development. Formation of reactive metabolites by CYPs can lead to heme modification and destruction of the enzyme. The structure of the adducted heme can provide key information on the mechanism of inactivation, which is of great interest during preclinical drug discovery. Historically, techniques to extract the modified heme or protoporphyrin IX species involved harsh extraction conditions and esterification of propionate groups to aid chromatography. We have developed a simplified extraction method and LC/MS chromatography system that does not require derivatization to quantify heme B and identify modified heme B species from multiple CYP-containing matrices. The method uses mass defect filter triggered data dependent MS2 scans to rapidly identify heme and protoporphyrin IX adducts. These methods may also be useful for the analysis of other heme variants and hemoproteins.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Heme/análise , Heme/química , Heme/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Protoporfirinas/metabolismo
2.
Xenobiotica ; 51(8): 901-915, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33993844

RESUMO

8-[(1H-1,2,3-benzotriazol-1-yl)amino]octanoic acid (8-BOA) was recently identified as a selective and potent mechanism-based inactivator (MBI) of breast cancer-associated CYP4Z1 and exhibited favourable inhibitory activity in vitro, thus meriting in vivo characterization.The pharmacokinetics and metabolism of 8-BOA in rats was examined after a single IV bolus dose of 10 mg/kg. A biphasic time-concentration profile resulted in relatively low clearance and a prolonged elimination half-life.The major circulating metabolites identified in plasma were products of ß-oxidation; congeners losing two and four methylene groups accounted for >50% of metabolites by peak area. The -(CH2)2 product was characterized previously as a CYP4Z1 MBI and so represents an active metabolite that may contribute to the desired pharmacological effect.Ex vivo analysis of total CYP content in rat liver and kidney microsomes showed that off-target CYP inactivation was minimal; liver microsomal probe substrate metabolism also demonstrated low off-target inactivation. Standard clinical chemistries provided no indication of acute toxicity.In silico simulations using the free concentration of 8-BOA in plasma suggested that the in vivo dose used here may effectively inactivate CYP4Z1 in a xenografted tumour.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Animais , Caprilatos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos
3.
Drug Metab Dispos ; 48(10): 1028-1043, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788161

RESUMO

Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.


Assuntos
Acroleína/análogos & derivados , Cinnamomum zeylanicum/química , Citocromo P-450 CYP2A6/antagonistas & inibidores , Interações Ervas-Drogas , Acroleína/química , Acroleína/farmacologia , Área Sob a Curva , Citocromo P-450 CYP2A6/isolamento & purificação , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2A6/ultraestrutura , Avaliação Pré-Clínica de Medicamentos , Humanos , Letrozol/farmacocinética , Microssomos Hepáticos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Nicotina/farmacocinética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
4.
J Med Chem ; 63(9): 4824-4836, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32302132

RESUMO

Mammary-tissue-restricted cytochrome P450 4Z1 (CYP4Z1) has garnered interest for its potential role in breast cancer progression. CYP4Z1-dependent metabolism of arachidonic acid preferentially generates 14,15-epoxyeicosatrienoic acid (14,15-EET), a metabolite known to influence cellular proliferation, migration, and angiogenesis. In this study, we developed time-dependent inhibitors of CYP4Z1 designed as fatty acid mimetics linked to the bioactivatable pharmacophore, 1-aminobenzotriazole (ABT). The most potent analogue, 8-[(1H-benzotriazol-1-yl)amino]octanoic acid (7), showed a 60-fold lower shifted-half-maximal inhibitory concentration (IC50) for CYP4Z1 compared to ABT, efficient mechanism-based inactivation of the enzyme evidenced by a KI = 2.2 µM and a kinact = 0.15 min-1, and a partition ratio of 14. Furthermore, 7 exhibited low off-target inhibition of other CYP isozymes. Finally, low micromolar concentrations of 7 inhibited 14,15-EET production in T47D breast cancer cells transfected with CYP4Z1. This first-generation, selective mechanism-based inhibitor (MBI) will be a useful molecular tool to probe the biochemical role of CYP4Z1 and its association with breast cancer.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Família 4 do Citocromo P450/antagonistas & inibidores , Ácidos Graxos/farmacologia , Triazóis/farmacologia , Ácido Araquidônico/metabolismo , Linhagem Celular Tumoral , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Desenho de Fármacos , Ácidos Graxos/síntese química , Ácidos Graxos/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Oxirredução , Triazóis/síntese química , Triazóis/metabolismo
5.
Biochemistry ; 59(6): 766-779, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31961139

RESUMO

Promiscuous and allosteric drug interactions with cytochrome P450 3A4 (CYP3A4) are ubiquitous but incompletely understood at the molecular level. A classic allosteric CYP3A4 drug interaction includes the benzodiazepine midazolam (MDZ). MDZ exhibits homotropic and heterotropic allostery when metabolized to 1'-hydroxy and 4-hydroxy metabolites in varying ratios. The combination of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and Gaussian accelerated molecular dynamics (GaMD) simulations of CYP3A4 in lipid nanodiscs and in a lipid bilayer, respectively, reveals MDZ-dependent changes in dynamics in a membrane environment. The F-, G-, and intervening helices, as well as the loop preceding the ß1-sheets, display the largest observed changes in HDX. The GaMD suggests a potential allosteric binding site for MDZ in the F'- and G'-regions, which undergo significant increases in HDX at near-saturating MDZ concentrations. The HDX-MS and GaMD results confirm that changes in dynamics are most significant near the developing consensus allosteric site, and these changes are distinct from those observed previously with the nonallosteric inhibitor ketoconazole. The results suggest that the allosteric MDZ remains mobile in its binding site at the Phe-cluster. The results further suggest that this binding site remains dynamic or changes the depth of insertion in the membrane.


Assuntos
Sítio Alostérico/fisiologia , Citocromo P-450 CYP3A/metabolismo , Bicamadas Lipídicas/metabolismo , Midazolam/metabolismo , Simulação de Dinâmica Molecular , Nanopartículas/metabolismo , Ansiolíticos/química , Ansiolíticos/metabolismo , Citocromo P-450 CYP3A/química , Humanos , Bicamadas Lipídicas/química , Lipídeos/química , Midazolam/química , Nanopartículas/química , Estrutura Secundária de Proteína
6.
J Biomol Screen ; 18(2): 199-210, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23071008

RESUMO

Induction of the cytochrome P450 (CYP) family of enzymes by coadministered compounds can result in drug-drug interactions, as in the case of the coadministration of rifampicin with many CYP3A substrates, including midazolam. Identification of potential drug-drug interactions due to CYP induction during drug discovery is critical. We present a substrate cocktail method that was applied to assess the induction of CYP1A, CYP2B6, CYP2C9, and CYP3A using a 96-well high-throughput format. Viable cell counts were determined using a high-content screening system to normalize activities. Substrate cocktail incubations demonstrated a similar fold induction for known inducers as compared with discrete probe incubations. The system was further validated by determining the induction potency of rifampicin. The E(max) and EC(50) values in two separate lots of hepatocytes for CYP3A induction by rifampicin in a 96-well format were similar when discrete probe was compared with the probe cocktail. This system has been demonstrated to be suitable for high-throughput assessments of CYP induction.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/enzimologia , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rifampina/farmacologia , Especificidade por Substrato
7.
Cancer Chemother Pharmacol ; 69(1): 229-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21698359

RESUMO

PURPOSE: E6201 is a natural product-inspired novel inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-1 (MEK1) and other kinases and is currently under development as an anticancer (parenteral administration) and antipsoriasis agent (topical application). In vitro and in vivo preclinical studies were performed to characterize the pharmacokinetics of E6201. Allometric scaling was applied to predict human pharmacokinetics of E6201. METHODS: In vitro metabolism studies for CYP induction and CYP inhibition were conducted using human hepatocytes and microsomes, respectively. Metabolic stability using microsomes and protein-binding studies using pooled plasma were performed for mice, rats, dogs, and human. Pharmacokinetics of E6201 and its isomeric metabolite, ER-813010, in mice, rats, and dogs was determined following single IV administration of E6201 at three dose levels. Bioanalysis was performed using LC/MS/MS. Pharmacokinetic parameters were determined using non-compartmental analysis, and allometric scaling with a two-compartment model was used to predict E6201 pharmacokinetics in humans. RESULTS: E6201 showed high plasma protein binding (>95%), and metabolic stability half-life ranged from 36 to 89 min across species. In vitro CYP inhibition (CYP1A2, 2C9, 2C19, 2D6, 2E1, and 3A) and CYP induction (CYP1A, 3A, 2C9, and 2C19) suggested no inhibitory or induction effect on the tested human CYPs up to 10 µM of E6201. Pharmacokinetics of E6201 in mice, rats, and dogs was characterized by mean clearance ranging from 3.45 to 10.92 L/h/kg, distribution volume ranging from 0.63 to 13.09 L/kg, and elimination half-life ranging from 0.4 to 1.6 h. ER-813010 was detected in all species with metabolite to parent exposure ratio (AUC(R)) ranging from 3.1 to 33.4% and exhibited fast elimination (<3 h). The allometry predicted high clearance and large volume of distribution of E6201 in humans and was in general in good agreement with the observed first human subject pharmacokinetics. CONCLUSIONS: E6201 exhibited high clearance, high to moderate distribution, and fast elimination in preclinical species. In vitro results suggested that E6201 has low risk of drug-drug interactions due to CYP inhibition and induction in humans. In the first-in-man study, E6201 exhibited high clearance, which was well predicted by allometric scaling.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Lactonas/farmacocinética , MAP Quinase Quinase 1/antagonistas & inibidores , Animais , Cromatografia Líquida , Cães , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Lactonas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Espectrometria de Massas em Tandem , Distribuição Tecidual
8.
Drug Metab Lett ; 4(4): 233-40, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20690899

RESUMO

For high throughput screens, the quickest methodology possible is desirable, but a substantial amount of potentially useful information is lacking since most screens for metabolic stability are conducted at one concentration, and sometimes at one time point. Information that would benefit projects during the discovery phase are to know the metabolic rate linearity (K(m) value) and projected hepatic clearance (CL(h) value), which is possible by the addition of one more concentration. This study used the FDA-preferred probe cytochrome P450 substrates to determine K(m), V(max), and CL(int) values. The results showed that compounds with relatively high metabolic rates produced more accurate and reproducible results that match well with predicted K(m) values according to the FDA. On the other hand, compounds with relatively low metabolic rates yielded more variable results. Thus, the use of two substrate concentrations should be useful with screening assays for assessing the kinetic values for other compounds.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Sondas Moleculares/metabolismo , Animais , Humanos , Cinética , Taxa de Depuração Metabólica , Modelos Biológicos , Reprodutibilidade dos Testes , Especificidade por Substrato
9.
Biochem Biophys Res Commun ; 341(2): 399-407, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16426572

RESUMO

Cytochrome P4501A1 (CYP1A1) induction, a marker of aryl hydrocarbon (Ah) receptor activation, has been associated with carcinogenicity of the environmental agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Consistently, we show that TCDD treatment led to induction of CYP1A1 in responsive human cancer cell lines including HepG2, LS174T, and MCF-7, as determined by Western blotting and CYP1A form-selective R-warfarin 6- and 8-hydroxylation. TCDD, however, preferably induced CYP1A2, not CYP1A1, in primary human hepatocytes. Such CYP1A form-preferred induction at the protein level was apparently uncorrelated with non-preferred mRNA induction in any cells studied. Moreover, while both genes were up-regulated by TCDD in primary hepatocytes and HepG2 cells, the induction of CYP1A1 and CYP1A2 at the mRNA level was distinguishable, indicated by the marked differences in activation kinetics and the response to the protein synthesis inhibitors, anisomycin and cycloheximide. Furthermore, formation of total benzo(a)pyrene (BaP)-DNA adducts was not altered following BaP exposure in TCDD-treated primary hepatocytes, whereas significantly elevated, in a CYP1A1-dependent manner, in the treated HepG2 cells. Taken together, our findings, demonstrating the complexities of TCDD-associated human Ah receptor function and differential regulations of CYP 1A enzymes, suggest clearly the need for caution when extrapolating data obtained in cell-based models.


Assuntos
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Poluentes Ambientais/toxicidade , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Anisomicina/farmacologia , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Benzo(a)pireno/química , Western Blotting , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Adutos de DNA , Dioxinas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Regulação para Cima , Varfarina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...